Extraordinary increase of lifetime of localized cold clouds by the viscous effect in thermally unstable two-phase interstellar media.
نویسندگان
چکیده
We numerically examine the influence of the viscosity on the relaxation process of localized clouds in thermally unstable two-phase media, which are locally heated by cosmic ray and cooled by radiation. Pulselike stationary solutions of the media are numerically obtained by a shooting method. In one-dimensional direct numerical simulations, localized clouds are formed during the two-phase separation and sustained extraordinarily. Such long-lived clouds have been recently observed in interstellar media. We demonstrate that the balance of the viscosity with a pressure gradient remarkably suppresses the evaporation of the clouds and controls the relaxation process. This balance fixes the peak pressure of localized structures and then the structure is attracted and trapped to one of the pulselike stationary solutions. While the viscosity has been neglected in most of previous studies, our study suggests that the precise treatment of the viscosity is necessary to discuss the evaporation of the clouds.
منابع مشابه
The Field Condition: A New Constraint of Spatial Resolution in Simulations of Thermally Unstable Hydrodynamics
We present the dynamics in thermally bistable medium by using onedimensional numerical calculations with cooling, heating, (realistic) thermal conduction, and physical viscosity. We set up a two-phase medium from thermally unstable one-phase medium and follow the long-term evolution of the medium. We focus on the spatial resolution because we have to resolve Field length λF that is the critical...
متن کاملThe Global Structure and Evolution of a Self-Gravitating Multi-phase Interstellar Medium in a Galactic Disk
Using high resolution, two-dimensional hydrodynamical simulations, we investigate the evolution of a self-gravitating multi-phase interstellar medium in the central kiloparsec region of a galactic disk. We find that a gravitationally and thermally unstable disk evolves, in a self-stabilizing manner, into a globally quasi-stable disk that consists of cold (T < 100 K), dense clumps and filaments ...
متن کاملMolecular cloud regulated star formation in galaxies
We describe a numerical implementation of star formation in disk galaxies, in which the conversion of cooling gas to stars in the multiphase interstellar medium is governed by the rate at which molecular clouds are formed and destroyed. In the model, clouds form from thermally unstable ambient gas and get destroyed by feedback from massive stars and thermal conduction. Feedback in the ambient p...
متن کاملEffects of shear and bulk viscosity on head-on collision of localized waves in high density compact stars
Head on collision of localized waves in cold and dense hadronic matter with and without shear and bulk viscosities is investigated. Non-relativistic dynamics of propagating waves is studied using the hydrodynamics description of the system and suitable equation of state. It will be shown that the localized waves are described by solutions of the Burgers equation. Simulations show that the propa...
متن کاملTwo-fluid Mhd Simulations of Converging Hi Flows in the Interstellar Medium. I: Methodology and Basic Results
We develop an unconditionally stable numerical method for solving the coupling between two fluids (frictional forces/heatings, ionization, and recombination), and investigate the dynamical condensation process of thermally unstable gas that is provided by the shock waves in a weakly ionized and magnetized interstellar medium by using two-dimensional two-fluid magnetohydrodynamical simulations. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2009